skip to main content


Search for: All records

Creators/Authors contains: "McNair, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.

     
    more » « less
  2. null (Ed.)
    Abstract Phytoplankton biomass is routinely estimated using relationships between cell volume and carbon (C) and nitrogen (N) content that have been defined using diverse plankton that span orders of magnitude in size. Notably, volume has traditionally been estimated with geometric approximations of cell shape using cell dimensions from planar two-dimensional (2D) images, which requires assumptions about the third, depth dimension. Given advances in image processing, we examined how cell volumes determined from three-dimensional (3D), confocal images affected established relationships between phytoplankton cell volume and C and N content. Additionally, we determined that growth conditions could result in 30–40% variation in cellular N and C. 3D phytoplankton cell volume measurements were on average 15% greater than the geometric approximations from 2D images. Volume method variation was minimal compared to both intraspecific variation in volumes (~30%) and the 50-fold variation in elemental density among species. Consequently, C:vol and N:vol relationships were unaltered by volume measurement method and growth environment. Recent advances in instrumentation, including those for at sea and autonomous applications can be used to estimate plankton biomass directly. Going forward, we recommend instrumentation that permits species identification alongside size and shape characteristics for plankton biomass estimates. 
    more » « less
  3. Abstract

    The Thomas Fire ignited on December 4, 2017 and burned for over one month. As the Thomas Fire burned, Santa Ana winds carried a thick plume of smoke and ash over the Santa Barbara Channel. We sought to determine whether the deposition of Thomas Fire ash to the Santa Barbara Channel had a measurable effect on the concentration and stable carbon isotopic composition (δ13C) of dissolved black carbon (DBC) in coastal waters. DBC is the condensed aromatic fraction of thermally altered organic carbon quantified using the benzenepolycarboxylic acid (BPCA) method. DBC δ13C signatures were determined via BPCA‐specific stable carbon isotopic analysis. Surface water DBC concentrations beneath the smoke plume were up to 13% higher than other sampling stations. Via controlled leaching experiments, we found that Thomas Fire ash released a considerable amount of DBC in seawater (1.4 g‐DBC per kg of ash organic carbon), which was further enhanced by photodissolution. By combining in situ and experimental data, we constructed an isotopic mixing model to estimate inputs of ash‐derived DBC to marine surface waters. Although we were able to detect slight elevations in DBC concentrations beneath the smoke plume, the ash‐derived contributions were too small to meaningfully shift the δ13C signature, which resulted in an observed mismatch between modeled and measured DBC δ13C values. Few studies have investigated the immediate impacts of wildfire on coastal biogeochemistry. Therefore, our work provides an important foundation for understanding atmospheric contributions of fire‐derived DBC to coastal margins.

     
    more » « less
  4. Abstract

    Herbivorous consumption of primary production is a key transformation in global biogeochemical cycles, directing matter and energy either to higher trophic levels, export production, or remineralization. Grazing by microzooplankton is often poorly constrained, particularly in dynamic coastal systems. Temperate coastal areas are seasonally and spatially variable, which presents both challenges and opportunities to identify patterns and drivers of grazing pressure. Here we report on two winter and one summer week‐long cruises (2018–2019), as part of the new Northeast U.S. Shelf Long‐Term Ecological Research program. During both seasons, coastal waters were colder and fresher, and had higher phytoplankton biomass than waters at the shelf break. The phytoplankton community was dominated by large cells in winter and by small cells in summer. Phytoplankton growth rates ranged from < 0.5 d−1in winter and up to 1.4 d−1in summer and were strongly correlated to temperature, to light availability, and to phytoplankton community size‐structure. Grazing rates were not correlated with total chlorophyll a, which points to other biological drivers, including species composition in predator‐prey interactions at the first trophic level. The percentage of primary production consumed (%PP) indicated higher trophic transfer in winter (%PP > 50%) than during summer (%PP < 20%), highlighting seasonal shifts in planktonic food web structure and function. These results imply that predictable shifts in environmental conditions can be linked to ecosystem shifts in net primary production. Hierarchies of variability, from localized to interannual and long‐term climate driven, can be understood within the context of sustained measurements of ecosystem properties and function.

     
    more » « less
  5. Abstract

    Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+‐coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find thatCbSITLfromCoccolithus braarudiiis transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement ofC. braarudiiand other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.

     
    more » « less
  6. Abstract

    The California Current System displays a strong seasonal cycle in water properties, circulation, and biological production. Interactions of the alongshore current with coastal and topographic features lead to high spatial variability forced by seasonal winds that displace surface coastal water offshore. This process also supplies nutrients to the euphotic zone by Ekman transport and eventually supports phytoplankton blooms typically dominated by diatoms. Here, we investigate the relationship between biogenic silica production and mesoscale upwelling dynamics along the central region of the California Current System between 2013 and 2015, a period affected by a warm anomaly known as “the Blob.” Changes in the upwelling phenology along California caused by this marine heatwave are investigated using an innovative index and related to patterns of diatom production during upwelling events to evaluate diatom resilience. Based on this new index, we estimated that the nutrient supply to the euphotic zone declined by 50% during the Blob, but the Blob had little impact on local production during individual upwelling events. A statistical analysis evaluating the relationship between production and environmental conditions reveals persistent biological hotspots characterized by high biomass, depleted nutrients, and high specific production rates (up to 0.7 d−1) throughout the study period. Lower observed biogenic silica to Chlorophyll aratios during the Blob suggested a taxonomic shift from siliceous to nonsiliceous phytoplankton and/or lightly silicified diatoms signaling a change at the base of the food chain that could have ramifications for productivity in this eastern boundary coastal upwelling system.

     
    more » « less
  7. The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set. 
    more » « less
  8. Summary

    A mix of adaptive strategies enable diatoms to sustain rapid growth in dynamic ocean regions, making diatoms one of the most productive primary producers in the world. We illustrate one such strategy off coastal California that facilitates continued, high, cell division rates despite silicic acid stress. Using a fluorescent dye to measure single‐cell diatom silica production rates, silicification (silica per unit area) and growth rates we show diatoms decrease silicification and maintain growth rate when silicon concentration limits silica production rates. While this physiological response to silicon stress was similar across taxa,in situsilicic acid concentration limited silica production rates by varying degrees for taxa within the same community. Despite this variability among taxa, silicon stress did not alter the contribution of specific taxa to total community silica production or to community composition. Maintenance of division rate at the expense of frustule thickness decreases cell density which could affect regional biogeochemical cycles. The reduction in frustule silicification also creates an ecological tradeoff: thinner frustules increase susceptibility to predation but reducing Si quotas maximizes cell abundance for a given pulse of silicic acid, thereby favouring a larger eventual population size which facilitates diatom persistence in habitats with pulsed resource supplies.

     
    more » « less